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In this paper we present and compare two unconditionally energy stable finite-difference
schemes for the phase field crystal equation. The first is a one-step scheme based on a con-
vex splitting of a discrete energy by Wise et al. [S.M. Wise, C. Wang, J.S. Lowengrub, An
energy stable and convergent finite-difference scheme for the phase field crystal equation,
SIAM J. Numer. Anal., in press]. In this scheme, which is first order in time and second order
in space, the discrete energy is non-increasing for any time step. The second scheme we
consider is a new, fully second-order two-step algorithm. In the new scheme, the discrete
energy is bounded by its initial value for any time step. In both methods, the equations at
the implicit time level are nonlinear but represent the gradients of strictly convex functions
and are thus uniquely solvable, regardless of time step-size. We solve the nonlinear equa-
tions using an efficient nonlinear multigrid method. Numerical simulations are presented
and confirm the stability, efficiency and accuracy of the schemes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Most crystals have defects, such as vacancies, grain boundaries, and dislocations. Such imperfections control, to a large
extent, the macroscopic properties of crystalline materials, and an understanding of their formation and evolution is of great
interest. Defects pose a considerable challenge to modeling and numerical simulation because of the complexity they intro-
duce. One model that has shown great versatility in simulating defects is the phase field crystal (PFC) equation proposed by
Elder et al. [3,4] to study the dynamics of atomic-scale crystal growth on diffusive time scales. In the PFC model, a phase-field
formulation is introduced that accounts for the periodic structure of a crystal lattice through a free energy functional of
Swift–Hohenberg type [14] that is minimized by periodic functions. The model naturally incorporates elastic and plastic
deformation of the crystal and the various crystal defects. The idea of the PFC is that a conserved phase variable is introduced
to describe a coarse-grained temporal average of the number density of atoms. Consequently, this method represents a sig-
nificant advantage over other atomistic methods such as molecular dynamics where the time steps are constrained by atom-
ic-vibration time scales. The PFC approach is related to dynamic density functional theory [10,1]. The recent review by
Provatas et al. [13] details the many applications of the PFC equation.

The PFC equation is a high-order (sixth-order) nonlinear partial differential equation. Except for very special cases, the
PFC equation cannot be solved analytically. Therefore, efficient numerical algorithms are essential. Previously, Elder et al.
[3,4] solved the PFC equation using an explicit Euler scheme, where a high-order time step restriction ðs < Ch6Þ is required
. All rights reserved.
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for stability. More recently, Mellenthin et al. [11] proposed a pseudo-spectral scheme in which an integrating factor method,
based on the linear terms, is used in Fourier space. Because a backward diffusive term is incorporated in the integrating fac-
tor, this term may significantly amplify low-to-moderate wavenumbers at large time steps and introduce accuracy-related
(and possibly stability-related) time step restrictions. In general, spectral methods have the potential to be more accurate
than lower order finite-difference methods. Further, the use of fast, parallel Fourier transforms enables these schemes to
potentially be highly efficient. However, the results may sensitive to discretization parameters since this approach combines
spatial and temporal errors. For example, seemingly equilibrated interfaces may actually be associated with an oscillatory
chemical potential and equilibria may sensitively depend on the time step. (See Leo et al. [9] for more details.) In addition,
unlike the finite difference method, the spectral method requires periodic boundary conditions and spatially uniform
meshes. In [2], Cheng and Warren introduced a linearized splitting scheme, similar to that analyzed in [16]. Cheng and War-
ren’s scheme depends on standard Fourier stability analysis of a linearized PFC equation, where the nonlinear term /3 (see
Eq. (3)) in the chemical potential is treated explicitly. A semi-implicit finite element method was introduced by Backofen
et al. [1]. Their method is essentially a standard backward Euler scheme, but where the nonlinear term /3 in the chemical
potential is linearized via ð/kþ1Þ3 � 3ð/kÞ2/kþ1 � 2ð/kÞ3. No stability analysis is given, though they claim that relatively large
step sizes can be achieved. None of the preceding works propose energy stable methods, i.e., methods for which the energy is
bounded by its value at the previous time step (strong energy stability) or by its initial value (weak energy stability). The
schemes described above are all linear, and thus conditions on solvability are somewhat more accessible. We point out that
because Backofen et al. discretize a backwards diffusive term implicitly (specifically, the 2D/ term in Eq. (3)) their scheme is
not expected to be unconditionally uniquely solvable.

In this paper, we present and compare two unconditionally energy stable finite-difference schemes for the PFC equation.
The first is a one-step scheme based on a convex splitting of a discrete energy and is first order in time and second order in
space. This method was proposed and analyzed in [19], but no numerical results were presented in that work. The second is a
new two-step scheme and is fully second order. In both cases the equations at the implicit time level are nonlinear but rep-
resent the gradients of strictly convex functions and are thus uniquely solvable, regardless of time step-size. Although we
focus on two-dimensions here, our analysis and numerical schemes apply equally well in three-dimensions. Herein we
use periodic boundary conditions for simplicity. However, this is not a constraint, as our analysis of the schemes works
for homogeneous Neumann and mixed period-homogeneous Neumann boundary conditions as well. In fact, in our last sim-
ulation (Figs. 7a–7d) we use the latter conditions. To efficiently solve the discrete systems at the implicit time-level, we use a
nonlinear full approximation storage (FAS) multigrid method [15]. The algorithm we use follows that developed for Cahn–
Hilliard equations by Kim et al. [8] for uniform grids and extended by Wise et al. [18] to adaptive, block-structured Cartesian
meshes. We demonstrate the convergence of both schemes numerically and the benefits of enhanced accuracy from the sec-
ond-order scheme. We use the second-order scheme to simulate the growth of a polycrystal and the development of grain
boundaries.

The contents of this paper are as follows. In Section 2, we introduce the phase field crystal (PFC) equation, and the closely-
related Swift–Hohenberg (SH) equation. Therein we give a brief description of the fully discrete schemes that will be exam-
ined later in detail. In Section 3, we build up the machinery required to rigorously define and analyze the schemes. In Section
4, we present the schemes in detail and demonstrate their properties, including the unique solvability and discrete-energy
stability of our schemes. In Section 5, we briefly describe the nonlinear multigrid methods used to solve the nonlinear equa-
tion at the implicit time level. In Section 6, numerical results are presented. We give some concluding remarks and suggest
some future work in Section 7.
2. Phase field crystal equations and proposed numerical schemes

Herein we consider a dimensionless energy of the form [4,14]
Eð/Þ ¼
Z

X

1
4

/4 þ 1� �
2

/2 � jr/j2 þ 1
2
ðD/Þ2

� �
dx; ð1Þ
where / : X � R2 ! R is the density field, � is a constant assumed to be less than 1, andr and D are the gradient and Lapla-
cian operators, respectively. Suppose that X ¼ ð0; LxÞ � ð0; LyÞ. There are two common types of gradient dynamics on X: (i)
non-conserved dynamics,
@t/ ¼ �Mð/Þl; ð2Þ
where Mð/Þ > 0 is a mobility, l is the chemical potential defined as
l :¼ d/E ¼ /3 þ ð1� �Þ/þ 2D/þ D2/ ð3Þ
and d/E denotes the variational derivative with respect to /; and (ii) conserved dynamics,
@t/ ¼ r � ðMð/ÞrlÞ: ð4Þ
For both dynamical equations / and D/ are assumed periodic on X; for the conserved dynamics equation l is additionally
taken to be periodic. We point out that the theory and numerical algorithms to follow apply for homogeneous Neumann
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boundary conditions as well. Because the dynamical equations are of gradient type, it is easy to see that the energy (1) is
non-increasing in time along the solution trajectories of either Eq. (2) or Eq. (4). Eq. (4) is a mass conservation equation
where the flux is proportional to the gradient of the chemical potential. This, along with the periodic boundary conditions,
ensures that

R
X @t/dx ¼ 0.

Eq. (2) is the Swift–Hohenberg (SH) equation [14] and is of fourth order in space. Eq. (4) is the phase field crystal (PFC)
equation and is a sixth-order equation. This paper shall be primarily concerned with the PFC equation, though most of the
theoretical results and numerical algorithms can be applied to the SH equation as well.

If M ¼ 1 the proposed schemes for the PFC Eq. (4) can be described easily. The schemes with more general mobilities are
given in Section 4. The convex-splitting scheme from [19], which is first order in time and second order in space, is
/kþ1 � /k ¼ sDhlkþ1; ð5Þ
lkþ1 :¼ ð/kþ1Þ3 þ ð1� �Þ/kþ1 þ 2Dh/

k þ Dhjkþ1; ð6Þ
jkþ1 :¼ Dh/

kþ1; ð7Þ
where Dh represents the five-point stencil approximation of Laplacian operator. In [19], the convergence of this discrete
scheme was established. No numerical results were presented however. The new, second-order scheme is
/kþ1 � /k ¼ sDhlkþ1=2; ð8Þ

lkþ1=2 :¼ 1
4
ð/kþ1 þ /kÞðð/kþ1Þ2 þ ð/kÞ2Þ þ 1� �

2
ð/kþ1 þ /kÞ þ 3Dh/

k � Dh/
k�1 þ Dhjkþ1=2; ð9Þ

jkþ1=2 :¼ 1
2
ðDh/

kþ1 þ Dh/
kÞ; ð10Þ
where /�1 :¼ /0. Note that the local truncation error for the initial step is second order which implies that the overall meth-
od is globally second order accurate. Evidence confirming this is presented in Section 6.

We mention that an alternate approach to the nonlinear convex splitting scheme (5)–(7) proposed here is a linear split-
ting scheme, as was suggested by Eyre [5] and He et al. [6] for the Cahn–Hilliard equation and by Xu and Tang [20] for a
bistable epitaxial thin film equation. This would involve a splitting of the chemical potential such as
lkþ1 ¼ Að/kþ1 � /kÞ � BDhð/kþ1 � /kÞ þ D2
h/

kþ1 þ ð/kÞ3 þ ð1� �Þ/k þ 2Dh/
k;
where the splitting parameters A; B P 0 must be determined in order to ensure stability. Unconditional unique solvability is
guaranteed, thanks to the linearity and positivity of the respective terms. It is expected that, as in [20], the energy will be
non-increasing in time provided A and B are sufficiently large, but that such A and B will depend on the unknown /kþ1

[20, inequality (2.14)]. The linear splitting method is extendable to higher-order schemes [6,20].
3. Discretization of two-dimensional space

Our primary goal in this section is to define some finite-difference operators and summation-by-parts formulae in two
space dimensions that are used to derive and analyze the numerical schemes. As mentioned before, the theory and algo-
rithms extend straightforwardly to three-dimensions.

3.1. Two-dimensional difference operators and summation-by-parts formulae

Here we use the notation and results for cell-centered functions from [19]. The reader is directed there for complete de-
tails. We begin with definitions of grid functions and difference operators needed for our discretization of two-dimensional
space. Let X ¼ ð0; LxÞ � ð0; LyÞ, with Lx ¼ m � h and Ly ¼ n � h, where m and n are positive integers and h > 0 is the spatial step
size. Consider the following three sets Em :¼ fi � h j i ¼ 0; . . . ;mg; Cm :¼ fði� 1=2Þ � h j i ¼ 1; . . . ;ng, and C �m :¼ fði� 1=2Þ�
h j i ¼ 0; . . . ;mþ 1g. Define the function spaces
Cm�n ¼ f/ : Cm � Cn ! Rg; C �m��n ¼ f/ : C �m � C�n ! Rg; ð11Þ
C �m�n ¼ f/ : C �m � Cn ! Rg; Cm��n ¼ f/ : Cm � C�n ! Rg; ð12Þ
Eew

m�n ¼ ff : Em � Cn ! Rg; Ens
m�n ¼ ff : Cm � En ! Rg: ð13Þ
The functions of Cm�n; C �m�n; Cm��n, and C �m��n are called cell centered functions, and we use the Greek symbols /;w, and f to de-
note them. In component form cell-centered functions are identified via /i;j :¼ /ðxi; yjÞ, where xi ¼ ði� 1=2Þ � h; yj ¼
ðj� 1=2Þ � h, and i and j can take on integer and half-integer values.

The functions of Eew
m�n and Ens

m�n are called east–west edge-centered functions and north–south edge-centered functions,
respectively. We reserve the symbols f and g to denote these functions. In component form east–west edge-centered func-
tions are identified via fiþ1=2;j :¼ f ðxiþ1=2; yjÞ; north–south edge-centered functions are identified via fi;jþ1=2 :¼ f ðxi; yjþ1=2Þ.

We define the following weighted inner-products



5326 Z. Hu et al. / Journal of Computational Physics 228 (2009) 5323–5339
ð/kwÞ ¼
Xm

i¼1

Xn

j¼1

/i;jwi;j; /; w 2 Cm�n [ C �m�n [ Cm��n [ C �m��n; ð14Þ

½fkg�ew ¼
1
2

Xm

i¼1

Xn

j¼1

ðfiþ1=2;jgiþ1=2;j þ fi�1=2;jgi�1=2;jÞ; f ; g 2 Eew
m�n; ð15Þ

½fkg�ns ¼
1
2

Xm

i¼1

Xn

j¼1

ðfi;jþ1=2gi;jþ1=2 þ fi;j�1=2gi;j�1=2Þ; f ; g 2 Ens
m�n: ð16Þ
We will also need the following one-dimensional inner-products:
ðfH;jþ1=2jgH;jþ1=2Þ ¼
Xm

i¼1

fi;jþ1=2gi;jþ1=2; ðfiþ1=2;Hjgiþ1=2;HÞ ¼
Xn

j¼1

fiþ1=2;jgiþ1=2;j; ð17Þ
where the first is defined for f ; g 2 Ens
m�n, and the second for f ; g 2 Eew

m�n.
We define the edge-to-center difference operators dx : Eew

m�n ! Cm�n and dy : Ens
m�n ! Cm�n component-wise via
dxfi;j ¼
1
h
ðfiþ1=2;j � fi�1=2;jÞ; dyfi;j ¼

1
h
ðfi;jþ1=2 � fi;j�1=2Þ;

i ¼ 1; . . . ;m;

j ¼ 1; . . . ;n:
ð18Þ
The x-dimension center-to-edge average and difference operators, respectively, Ax; Dx : C �m�n ! Eew
m�n are defined component-

wise as
Ax/iþ1=2;j ¼
1
2
ð/i;j þ /iþ1;jÞ; Dx/iþ1=2;j ¼

1
h
ð/iþ1;j � /i;jÞ;

i ¼ 0; . . . ;m;

j ¼ 1; . . . ; n:
ð19Þ
Likewise, the y-dimension center-to-edge average and difference operators, respectively, Ay; Dy : Cm��n ! Ens
m�n are defined

component-wise as
Ay/i;jþ1=2 ¼
1
2
ð/i;j þ /i;jþ1Þ; Dy/i;jþ1=2 ¼

1
h
ð/i;jþ1 � /i;jÞ;

i ¼ 1; . . . ;m;

j ¼ 0; . . . ;n:
ð20Þ
The standard 2D discrete Laplacian, Dh : C �m��n ! Cm�n, is defined as
Dhwi;j ¼ dxðDxwÞi;j þ dyðDywÞi;j ¼
1

h2 ðwiþ1;j þ wi�1;j þ wi;jþ1 þ wi;j�1 � 4wi;jÞ;
i ¼ 1; . . . ;m;

j ¼ 1; . . . ;n:
ð21Þ
From these definitions, we obtain the following results [19]:

Proposition 1 (Summation-by-parts). If / 2 C �m�n [ C �m��n and f 2 Eew
m�n then
h2½Dx/kf �ew ¼ �h2ð/kdxf Þ � hðAx/1=2;Hjf1=2;HÞ þ hðAx/mþ1=2;Hjfmþ1=2;HÞ; ð22Þ
and if / 2 Cm��n [ C �m��n and f 2 Ens
m�n then
h2½Dy/kf �ns ¼ �h2ð/kdyf Þ � hðAy/H;1=2jfH;1=2Þ þ hðAy/H;nþ1=2jfH;nþ1=2Þ: ð23Þ
Proposition 2 (Discrete Green’s first identity). Let /;w 2 C �m��n. Then
h2½Dx/kDxw�ew þ h2½Dy/kDyw�ns ¼ �h2ð/kDhwÞ � hðAx/1=2;HjDxw1=2;HÞ þ hðAx/mþ1=2;HjDxwmþ1=2;HÞ
� hðAy/H;1=2jDywH;1=2Þ þ hðAy/H;nþ1=2jDywH;nþ1=2Þ: ð24Þ
Proposition 3 (Discrete Green’s second identity). Let /;w 2 C �m��n. Then
h2ð/kDhwÞ ¼ h2ðDh/kwÞ þ hðAx/mþ1=2;HjDxwmþ1=2;HÞ � hðDx/mþ1=2;HjAxwmþ1=2;HÞ � hðAx/1=2;HjDxw1=2;HÞ
þ hðDx/1=2;HjAxw1=2;HÞ þ hðAy/H;nþ1=2jDywH;nþ1=2Þ � hðDy/H;nþ1=2jAywH;nþ1=2Þ � hðAy/H;1=2jDywH;1=2Þ
þ hðDy/H;1=2jAywH;1=2Þ: ð25Þ
We remark that these formulae have straightforward extensions to three dimensions.
3.2. Periodic boundary conditions

In this paper we are interested in periodic grid functions. Specifically, we shall say the cell-centered function / 2 C �m��n is
periodic if and only if
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/mþ1;j ¼ /1;j; /0;j ¼ /m;j; j ¼ 1; . . . ;n; ð26Þ
/i;nþ1 ¼ /i;1; /i;0 ¼ /i;n; i ¼ 0; . . . ;mþ 1: ð27Þ
For such functions, the center-to-edge averages and differences are periodic. For example, if / 2 C �m��n is periodic, then
Ax/mþ1=2;j ¼ Ax/1=2;j and also Dx/mþ1=2;j ¼ Dx/1=2;j, for all j ¼ 0;1; . . . ;nþ 1. We note that the results for periodic functions that
are to follow also hold, in a possibly slightly modified form, when the boundary conditions are taken to be homogeneous
Neumann,
/mþ1;j ¼ /m;j; /0;j ¼ /1;j; j ¼ 1; . . . ;n; ð28Þ
/i;nþ1 ¼ /i;n; /i;0 ¼ /i;1; i ¼ 0; . . . ;mþ 1; ð29Þ
or mixed periodic-homogeneous Neumann.

3.3. Norms

We use the following norms for cell-centered functions. If / 2 Cm�n, then k/k2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð/k/Þ

q
; k/k4 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð/4k1Þ

q
; k/k1 :¼

max16i6m
16j6n

j/i;jj, and we define krh/k2, where / 2 C �m��n, to mean
krh/k2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2½Dx/kDx/�ew þ h2½Dy/kDy/�ns

q
: ð30Þ
We will use the following discrete Sobolev-type norms for grid functions / 2 C �m��n : k/k0;2 :¼ k/k2 and
k/k1;2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/k2

2 þ krh/k2
2

q
; k/k2;2 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/k2 þ krh/k2

2 þ kDh/k2
2

q
: ð31Þ
4. The numerical methods in detail and their properties

4.1. A convex splitting of the discrete energy

We begin by defining a fully discrete energy that is consistent with the continuous space energy (1). In particular, define
the discrete energy F : C �m��n ! R to be
Fð/Þ :¼ 1
4
k/k4 þ

1� �
2
k/k2

2 � krh/k2
2 þ

1
2
kDh/k2

2: ð32Þ
The following was proved in [19].

Proposition 4. Suppose that / 2 C �m��n is periodic and that Dh/ 2 C �m��n is also periodic. Define the energies
Fcð/Þ :¼ 1
4
k/k4

4 þ
1� �

2
k/k2

2 þ
1
2
kDh/k2

2; Feð/Þ :¼ krh/k2
2: ð33Þ
Then the gradients of the respective energies are d/Fc ¼ /3 þ ð1� �Þ/þ D2
h/ and d/Fe ¼ �2Dh/, and Fc and Fe are convex, pro-

vided � < 1. Hence F, as defined in (32), admits the convex splitting F ¼ Fc � Fe.

The convex-splitting scheme for the PFC equation, proposed and analyzed in [19], is based on Proposition 4. In particular the
scheme is the following: given /k 2 C �m��n periodic, find /kþ1;lkþ1;jkþ1 2 C �m��n periodic such that
/kþ1 � /k ¼ sfdxðMðAx/
kÞDxlkþ1Þ þ dyðMðAy/

kÞDylkþ1Þg; ð34Þ
where s > 0 and
lkþ1 :¼ d/Fcð/kþ1Þ � d/Feð/kÞ ¼ ð/kþ1Þ3 þ ð1� �Þ/kþ1 þ 2Dh/
k þ Dhjkþ1; ð35Þ

jkþ1 :¼ Dh/
kþ1: ð36Þ
The second-order scheme, though not specifically based on the convex splitting in Proposition 4, is similar to the scheme
given above: given /k;/k�1 2 C �m��n periodic, find /kþ1;lkþ1=2;jkþ1=2 2 C �m��n periodic such that
/kþ1 � /k ¼ s dx M
3
2

Ax/
k � 1

2
Ax/

k�1
� �

Dxlkþ1=2
� �

þ dy M
3
2

Ay/
k � 1

2
Ay/

k�1
� �

Dylkþ1=2
� �� �

; ð37Þ
where s > 0 and
lkþ1=2 :¼ 1
4
ð/kþ1 þ /kÞðð/kþ1Þ2 þ ð/kÞ2Þ þ 1� �

2
ð/kþ1 þ /kÞ þ 3Dh/

k � Dh/
k�1 þ Dhjkþ1=2; ð38Þ

jkþ1=2 :¼ 1
2
ðDh/

kþ1 þ Dh/
kÞ; ð39Þ
and /�1 :¼ /0.
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4.2. Unconditional unique solvability of the schemes

We now show that both schemes are uniquely solvable for any time step.

Theorem 5. The convex-splitting scheme (34) and the second-order scheme (37) are uniquely solvable for any time step-size
s > 0. Moreover, both schemes are discretely mass conserving, i.e., ð/kþ1 � /kk1Þ ¼ 0.

Proof. This proof follows that of Thm. 3.4 in [19] and is based on a convexity argument. Discrete mass conservation follows
from the following calulation: using summation-by-parts Proposition 1
ð/kþ1 � /kk1Þ ¼ sðdxðMH

ewDxlHÞ þ dyðMH

nsDylHÞk1Þ ¼ �s½MH

ewDxlHkDx1�ew � s½MH

nsDylHkDy1�ns ¼ 0; ð40Þ
where MH

ew;M
H

ns, and lH are the appropriate variables from the scheme (34) or the scheme (37). Thus, if the schemes have a
solution /kþ1, then by necessity it must be that ð/kþ1k1Þ ¼ ð/kk1Þ, i.e., /kþ1 and /k have equal means.

Now, without loss of generality, by rescaling the problem if necessary, we may suppose that /k 2 H, where H is the
subspace of mean-zero functions in Cm�n. (If / 2 H then ð/k1Þ ¼ 0.) The appropriate space for solutions of both (34) and (37)
must necessarily be H.

Suppose that / 2 C �m��n is periodic, such that Dh/ 2 C �m��n is also periodic. For the convex-splitting scheme (34) consider the
following functional on H:
G1ð/Þ :¼ h2

2
ð/k/ÞH;L1

� h2ð/k/kÞH;L1
þ Fcð/Þ � h2ð/kd/Feð/kÞÞ; ð41Þ
where the H; L1 inner-product is defined as
ð/1k/2ÞH;L1
:¼ ½sMðAx/

kÞDxw1kDxw2�ew þ ½sMðAy/
kÞDyw1kDyw2�ns ð42Þ
and wi 2 C �m��n is the unique solution [19, Lemma 3.2] to
L1ðwiÞ :¼ �sdxðMðAx/
kÞDxwiÞ � sdyðMðAy/

kÞDywiÞ ¼ /i; ð43Þ
such that wi is periodic and has mean zero ðwik1Þ ¼ 0. It is possible to show that (41) is strictly convex, and minimizing the
strictly convex functional (41) is equivalent to solving (34). The complete details may be found in [19, Theorem 3.4].

For the second-order scheme (37) consider the alternate functional on H:
G2ð/Þ ¼
h2

2
ð/k/ÞH;L2

� h2ð/k/kÞH;L2
þ Qð/Þ þ h2 /

1� �
2

/k þ 3Dh/
k � Dh/

k�1 þ 1
2

D2
h/

k

����� �
; ð44Þ
where
Qð/Þ ¼ h2

4
/4

4
þ /3

3
/k þ /2

2
ð/kÞ2 þ /ð/kÞ3k1

 !
þ 1� �

4
k/k2

2 þ
1
4
kDh/k2

2 ð45Þ
and where the H; L2 inner-product is defined as
ð/1k/2ÞH;L2
:¼ sM

3
2

Ax/
k � 1

2
Ax/

k�1
� �

Dxw1kDxw2

� 	
ew
þ sM

3
2

Ay/
k � 1

2
Ay/

k�1
� �

Dyw1kDyw2

� 	
ns

ð46Þ
and wi 2 C �m��n is the unique solution [19, Lemma 3.2] to
L2ðwiÞ :¼ �sdx M
3
2

Ax/
k � 1

2
Ax/

k�1
� �

Dxwi

� �
� sdy M

3
2

Ay/
k � 1

2
Ay/

k�1
� �

Dywi

� �
¼ /i; ð47Þ
such that wi is periodic and has mean zero ðwik1Þ ¼ 0.
The functional Q is convex. This follows because k/k2

2 and kDh/k2
2 are convex (see [19]) and because
d2

d2/

1
4

/4

4
þ /3

3
/k þ /2

2
ð/kÞ2 þ /ð/kÞ3

 !" #
¼ 1

2
/2 þ 1

4
ð/þ /kÞ2 P 0: ð48Þ
Also note that by construction
d
d/

1
4

/4

4
þ /3

3
/k þ /2

2
ð/kÞ2 þ /ð/kÞ3

 !" #
¼ 1

4
ð/þ /kÞð/2 þ ð/kÞ2Þ; ð49Þ
where the right-hand-side is the nonlinear term in Eq. (38). Using the convexity of Q and the techniques in [19, Theorem 3.4],
one may show that G2 is strictly convex over H and that minimizing G2 is equivalent to solving the second-order scheme (37),
which completes the proof of the theorem. h
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4.3. Unconditional stability of the schemes

The following result [19, Theorem 3.5] makes proving stability for the convex-splitting scheme (34) straightforward.

Proposition 6. Suppose that /kþ1; /k 2 C �m��n are periodic, and that Dh/
kþ1 2 C �m��n is also periodic. Assume that the discrete

energy F admits the convex splitting F ¼ Fc � Fe above. Then
Fð/kþ1Þ � Fð/kÞ 6 h2 ðd/Fcð/kþ1Þ � d/Feð/kÞk/kþ1 � /kÞ: ð50Þ
The energy decay estimate in Propostion 6 readily yields the (strong) energy stability of the convex-splitting scheme.

Proposition 7. Suppose that /k 2 C �m��n is periodic and /kþ1 2 C �m��n is a solution to (34). The convex-splitting scheme (34) is
unconditionally (strongly) energy stable, meaning that for any time step-size s > 0,
Fð/kþ1Þ 6 Fð/kÞ: ð51Þ
Proof. Using the energy estimate and summation-by-parts Proposition 1, we have
Fð/kþ1Þ � Fð/kÞ 6 h2ðd/Fcð/kþ1Þ � d/Feð/kÞk/kþ1 � /kÞ ¼ h2ðlkþ1ksfdxðMðAx/
kÞDxlkþ1Þ þ dyðMðAy/

kÞDylkþ1ÞgÞ

¼ �sh2f½Dxlkþ1kMðAx/
kÞDxlkþ1�ew þ ½Dylkþ1kMðAy/

kÞDylkþ1�nsg 6 0: �
Remark 8. Note that the unconditional strong energy stability of (34) immediately implies the unconditional weak energy
stability of the scheme. The latter means that for any time step-size s > 0 and any n
Fð/nÞ 6 Fð/0Þ: ð52Þ
We cannot appeal to the energy decay estimate in Proposition 6 for the second-order scheme (37) because it does not
specifically have the structure of a convex splitting. In fact, it appears that a statement of strong energy stability is not pos-
sible using the energy F. (We give a remark on this point after the next proposition.) However, weak energy stability suffices
for our purposes.

Proposition 9. Suppose that /k; /k�1 2 C �m��n are periodic, and that /kþ1 2 C �m��n is a solution to (37). The second-order scheme
(37) is unconditionally (weakly) energy stable, meaning that for any time step-size s > 0 and any n
Fð/nÞ 6 Fð/0Þ: ð53Þ
Proof. We begin by defining
krhlkþ1=2k2
M :¼ h2 Dxlkþ1=2kM 3

2
Ax/

k � 1
2

Ax/
k�1

� �
Dxlkþ1=2

� 	
ew
þ Dylkþ1=2kM 3

2
Ay/

k � 1
2

Ay/
k�1

� �
Dylkþ1=2

� 	
ns

� �
:

ð54Þ
Now suppose that k P 1. Taking the inner product of lkþ1=2 with (37) and using summation-by-parts Proposition 1 we obtain
�skrhlkþ1=2k2
M ¼ Fð/kþ1Þ � Fð/kÞ þ krh/

kþ1k2
2 � krh/

kk2
2 þ h2ð/kþ1 � /kk3Dh/

k � Dh/
k�1Þ: ð55Þ
With the identity
h2ð/kþ1 � /kk3Dh/
k � Dh/

k�1Þ ¼ �krh/
kþ1k2

2 þ krh/
kk2

2 þ krhð/kþ1 � /kÞk2
2 þ h2ð/kþ1 � /kkDhð/k � /k�1ÞÞ; ð56Þ
we have
Fð/kþ1Þ � Fð/kÞ ¼ �skrhlkþ1=2k2
M � krhð/kþ1 � /kÞk2

2 � h2ð/kþ1 � /kkDhð/k � /k�1ÞÞ: ð57Þ
Using summation-by-parts and Cauchy’s inequality, the last term satisfies
�h2ð/kþ1 � /kkDhð/k � /k�1ÞÞ ¼ h2f½Dxð/kþ1 � /kÞkDxð/k � /k�1Þ�ew þ ½Dyð/kþ1 � /kÞkDyð/k � /k�1Þ�nsg

6
1
2
krhð/kþ1 � /kÞk2

2 þ
1
2
krhð/k � /k�1Þk2

2: ð58Þ
Combining (57) and (58) we have
Fð/kþ1Þ � Fð/kÞ 6 �skrhlkþ1=2k2
M �

1
2
krhð/kþ1 � /kÞk2

2 þ
1
2
krhð/k � /k�1Þk2

2: ð59Þ
For the k ¼ 0 case, using that /0 ¼ /�1, the last term on the right-hand-side of (57) disappears to yield
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Fð/1Þ � Fð/0Þ ¼ �skrhl1=2k2
M � krhð/1 � /0Þk2

2: ð60Þ
Now, summing Eq. (59) we have
Fð/nÞ � Fð/1Þ ¼
Xn�1

k¼1

ðFð/kþ1Þ � Fð/kÞÞ 6
Xn�1

k¼1

�skrhlkþ1=2k2
M �

1
2
krhð/kþ1 � /kÞk2

2 þ
1
2
krhð/k � /k�1Þk2

2

� �

¼ �s
Xn�1

k¼1

krhlkþ1=2k2
M �

1
2
krhð/n � /n�1Þk2

2 þ
1
2
krhð/1 � /0Þk2

2: ð61Þ
Adding Eq. (60) to Eq. (61) yields
Fð/nÞ � Fð/0Þ 6 �s
Xn�1

k¼0

krhlkþ1=2k2
M �

1
2
krhð/n � /n�1Þk2

2 �
1
2
krhð/1 � /0Þk2

2 6 0; ð62Þ
and the result is proven. h

Remark 10. An alternative approach to the question of energy stability is to introduce the discrete energy
eF ð/kþ1;/kÞ :¼ Fð/kþ1Þ þ 1
2
krhð/kþ1 � /kÞk2

2: ð63Þ
Inequality (59) shows that this energy is non-increasing from one time step to the next. In other words, the second-order
scheme (37) is strongly energy stable with respect to eF . Moreover, eF is consistent with E from (1) as h and s tend to zero.

Since both schemes are unconditionally weakly energy stable, using the methods in [19] we can show that both schemes
are in fact stable in the infinity norm.

Theorem 11. Let Uðx; yÞ be a smooth, periodic function on X ¼ ð0; LxÞ � ð0; LyÞ and /0
i;j :¼ Uðxi; yjÞ, and suppose E is the

continuous energy (1). Let /k
i;j 2 C �m��n be the kth periodic solution of either of the schemes (34) or (37). Then
k/kk1 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1EðUÞ þ C2LxLy

q
; ð64Þ
where C1 and C2 are positive constants neither of which depend on on either s or h.

Remark 12. This last result holds also in one dimension. However, the proof presented in [19] does not automatically extend
to three dimensions. This is because a discrete Sobolev inequality is used to translate energy stability into pointwise stability,
and the inequality fails in three dimensions. We are currently studying the three dimensional case in further detail.

Using Theorem 11 and the techniques in [19], convergence of the schemes may be proven in one and two dimensions; in
fact, this was done for the convex-splitting scheme (34) in [19].

5. Numerical solutions

In this section we discuss the practical numerical solution of both schemes (34) and (37) using the nonlinear multigrid
method. Since the approach is quite similar for both schemes, we give the full details for the first (34), then point out what
steps need to be modified for the second (37).

5.1. Nonlinear multigrid solution of the convex-splitting scheme

The scheme (34) is the following: find /kþ1;lkþ1, and jkþ1 in C �m��n whose components solve
/kþ1
i;j � sdxðMðAx/

kÞDxlkþ1Þi;j � sdyðMðAy/
kÞDylkþ1Þi;j ¼ /k

i;j; ð65Þ

lkþ1
i;j � ð/

kþ1
i;j Þ

3 � ð1� �Þ/kþ1
i;j � Dhjkþ1

i;j ¼ 2Dh/
k
i;j; ð66Þ

jkþ1
i;j � Dh/

kþ1
i;j ¼ 0; ð67Þ
where /kþ1;/k;lkþ1, and jkþ1 are all assumed periodic. We use a nonlinear FAS multigrid method to solve the system (65)–
(67) efficiently. This involves defining operator and source terms, which we do as follows. Let / ¼ ð/kþ1;lkþ1;jkþ1ÞT . Define
the 3�m� n nonlinear operator N ¼ ðNð1Þ;Nð2Þ;Nð3ÞÞT as
Nð1Þi;j ð/Þ ¼ /kþ1
i;j � sdxðMðAx/

kÞDxlkþ1Þi;j � sdyðMðAy/
kÞDylkþ1Þi;j; ð68Þ

Nð2Þi;j ð/Þ ¼ lkþ1
i;j � ð/

kþ1
i;j Þ

3 � ð1� �Þ/kþ1
i;j � Dhjkþ1

i;j ; ð69Þ

Nð3Þi;j ð/Þ ¼ jkþ1
i;j � Dh/

kþ1
i;j ð70Þ
and the 3�m� n source S ¼ ðSð1Þ; Sð2Þ; Sð3ÞÞT as
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Sð1Þi;j ð/
kÞ ¼ /k

i;j; Sð2Þi;j ð/
kÞ ¼ 2Dh/

k
i;j; Sð3Þi;j ð/

kÞ ¼ 0: ð71Þ
Then Eqs. (65)–(67) are equivalent to Nð/Þ ¼ Sð/kÞ.
As we use a somewhat standard nonlinear FAS multigrid scheme (we refer the reader to Section 5.3 of Trottenberg et al.

[15] for complete details), the only items to discuss in detail are the nonlinear smoothing scheme for the operator N, and the
interpolation operators for communicating between grids. For smoothing we use a nonlinear Gauss–Seidel method with
Red–Black ordering. In what follows, to simplify the discussion, we give the details of the smoothing using the simpler Lex-
icographic ordering. Let ‘ be the index for the lexicographic Gauss–Seidel, and set Mew

iþ1=2;j ¼ MðAx/
k
iþ1=2;jÞ and

Mns
i;jþ1=2 ¼ MðAy/

k
i;jþ1=2Þ. The smoothing scheme is as follows: for every ði; jÞ, stepping lexicographically from (1,1) to ðm;nÞ,

find /kþ1;‘þ1
i;j , lkþ1;‘þ1

i;j , and jkþ1;‘þ1
i;j that solve
/kþ1;‘þ1
i;j þ s

h2 Mew
iþ1=2;j þMew

i�1=2;j þMns
i;jþ1=2 þMns

i;j�1=2


 �
lkþ1;‘þ1

i;j

¼ Sð1Þi;j ð/
kÞ þ s

h2 Mew
iþ1=2;jl

kþ1;‘
iþ1;j þMew

i�1=2;jl
kþ1;‘þ1
i�1;j þMns

i;jþ1=2l
kþ1;‘
i;jþ1 þMns

i;j�1=2l
kþ1;‘þ1
i;j�1


 �
; ð72Þ

� 1� �þ 3 /kþ1;‘
i;j


 �2
� �

/kþ1;‘þ1
i;j þ lkþ1;‘þ1

i;j þ 4

h2 jkþ1;‘þ1
i;j

¼ Sð2Þi;j ð/
kÞ � 2 /kþ1;‘

i;j


 �3
þ 1

h2 jkþ1;‘
iþ1;j þ jkþ1;‘þ1

i�1;j þ jkþ1;‘
i;jþ1 þ jkþ1;‘þ1

i;j�1


 �
; ð73Þ

4

h2 /kþ1;‘þ1
i;j þ jkþ1;‘þ1

i;j ¼ Sð3Þi;j ð/
kÞ þ 1

h2 /kþ1;‘
iþ1;j þ /kþ1;‘þ1

i�1;j þ /kþ1;‘
i;jþ1 þ /kþ1;‘þ1

i;j�1


 �
: ð74Þ
Note that we have used a local Newton linearization of the cubic term, but otherwise this is a standard vector application of
Gauss–Seidel. This 3� 3 linear system is unconditionally solvable, provided � < 1 (the determinant of the coefficient matrix
is always positive in this case). We use Cramer’s Rule to solve for /kþ1;‘þ1

i;j ;lkþ1;‘þ1
i;j , and jkþ1;‘þ1

i;j .
Once a single, complete smoothing sweep is concluded, i.e., all grid points have been traversed exactly once, we project

the solution ð/kþ1;‘þ1
i;j ;lkþ1;‘þ1

i;j ;jkþ1;‘þ1
i;j Þ to the space of periodic functions. In other words, we enforce the boundary conditions

after a smoothing sweep. Three smoothing sweeps constitute the smoothing operation.
Finally, as we work on cell-centered grids, we use the interpolation operators most suited for this setting. In particular, for

the restriction operator we use cell-center averaging, and for the prolongation operator we use piece-wise constant interpo-
lation Section 2.8.4 [15].

5.2. Multigrid solution of the second-order scheme

Let / ¼ ð/kþ1;lkþ1=2;jkþ1=2ÞT . Define the 3�m� n nonlinear operator N ass
Nð1Þi;j ð/;/
kÞ ¼ /kþ1

i;j � sdx M
3
2

Ax/
k � 1

2
Ax/

k�1
� �

Dxlkþ1=2
� �

i;j

� sdy M
3
2

Ay/
k � 1

2
Ay/

k�1
� �

Dylkþ1=2
� �

i;j

; ð75Þ

Nð2Þi;j ð/;/
kÞ ¼ lkþ1=2

i;j � 1
4
ð/kþ1

i;j þ /k
i;jÞðð/

kþ1
i;j Þ

2 þ ð/k
i;jÞ

2Þ � 1� �
2

/kþ1
i;j � Dhjkþ1=2

i;j ; ð76Þ

Nð3Þi;j ð/;/
kÞ ¼ jkþ1=2

i;j � 1
2

Dh/
kþ1
i;j ð77Þ
and the 3�m� n source S ¼ ðSð1Þ; Sð2Þ; Sð3ÞÞT as
Sð1Þi;j ð/
k;/k�1Þ ¼ /k

i;j; ð78Þ

Sð2Þi;j ð/
k;/k�1Þ ¼ 1� �

2
/k

i;j þ 3Dh/
k
i;j � Dh/

k�1
i;j ; ð79Þ

Sð3Þi;j ð/
k;/k�1Þ ¼ 1

2
Dh/

k
i;j: ð80Þ
Again let ‘ be the index for the lexicographic Gauss–Seidel, and define
Mew
iþ1=2;j ¼ M

3
2

Ax/
k
iþ1=2;j �

1
2

Ax/
k�1
iþ1=2;j

� �
; ð81Þ

Mns
i;jþ1=2 ¼ M

3
2

Ay/
k
i;jþ1=2 �

1
2

Ay/
k�1
i;jþ1=2

� �
: ð82Þ
The smoothing scheme is as follows: for every ði; jÞ, stepping lexicographically from (1,1) to ðm;nÞ, find /kþ1;‘þ1
i;j ;lkþ1=2;‘þ1

i;j , and
jkþ1=2;‘þ1

i;j that solve
/kþ1;‘þ1
i;j þ s

h2 Mew
iþ1=2;j þMew

i�1=2;j þMns
i;jþ1=2 þMns

i;j�1=2


 �
lkþ1=2;‘þ1

i;j

¼ Sð1Þi;j /k;/k�1

 �

þ s

h2 Mew
iþ1=2;jl

kþ1=2;‘
iþ1;j þMew

i�1=2;jl
kþ1=2;‘þ1
i�1;j þMns

i;jþ1=2l
kþ1=2;‘
i;jþ1 þMns

i;j�1=2l
kþ1=2;‘þ1
i;j�1


 �
; ð83Þ
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� 1� �
2
þ 1

4
/kþ1;‘

i;j


 �2
þ /k

i;j


 �2
� �� �

/kþ1;‘þ1
i;j þ lkþ1=2;‘þ1

i;j þ 4

h2 jkþ1=2;‘þ1
i;j

¼ Sð2Þi;j /k;/k�1

 �

þ 1
4

/kþ1;‘
i;j


 �2
þ /k

i;j


 �2
� �

/k
i;j þ

1

h2 jkþ1=2;‘
iþ1;j þ jkþ1=2;‘þ1

i�1;j þ jkþ1=2;‘
i;jþ1 þ jkþ1=2;‘þ1

i;j�1


 �
; ð84Þ

2

h2 /kþ1;‘þ1
i;j þ jkþ1=2;‘þ1

i;j ¼ Sð3Þi;j /k;/k�1

 �

þ 1

2h2 /kþ1;‘
iþ1;j þ /kþ1;‘þ1

i�1;j þ /kþ1;‘
i;jþ1 þ /kþ1;‘þ1

i;j�1


 �
: ð85Þ
Here we have used a local Picard linearization of the cubic term in the Gauss–Seidel scheme. Again, a simple calculation of
the determinate reveals that this 3� 3 linear system is unconditionally solvable, provided � < 1. We use Cramer’s Rule to
solve for /kþ1;‘þ1

i;j ;lkþ1=2;‘þ1
i;j , and jkþ1=2;‘þ1

i;j .

6. Numerical results

In this section we first demonstrate the convergence numerically of both the convex-splitting scheme (34) and the sec-
ond-order scheme (37). We then present examples to show the power of the second-order method in computing the evo-
lution of large systems.

6.1. Convergence of the convex-splitting scheme and the second-order scheme

To estimate the convergence rate with respect to a mesh with grid spacing h, simulations are performed using the three
different grid spacings 2h;h and h=2. Since /h is defined at the cell centers, we define the Cauchy error between two different
grid spacings /h and /h=2 to be
eh:h=2
i;j ¼ /h

i;j �
1
4
ð/h=2

2i;2j þ /h=2
2i�1;2j þ /h=2

2i;2j�1 þ /h=2
2i�1;2j�1Þ ð86Þ
and correspondingly for e2h:h. The rate of convergence is defined as
log2
ke2h:hk2

keh:h=2k2

� �
: ð87Þ
We examine the convergence of our algorithm with the following initial data:
/ðx; yÞ ¼ 0:07� 0:02 cos
2pðx� 12Þ

32

� �
sin

2pðy� 1Þ
32

� �
þ 0:02 cos2 pðxþ 10Þ

32

� �
cos2 pðyþ 3Þ

32

� �
� 0:01 sin2 4px

32

� �
sin2 4pðy� 6Þ

32

� �
: ð88Þ
We point out that the numerical solutions evolve to a non-trivial state using this data. The domain is X ¼ ð0;32Þ � ð0;32Þ and
the solution is evolved to time tfinal ¼ 10, with � ¼ 0:025 and mobility Mð/Þ ¼ 1. The grid sizes are 162;322;642;1282;2562,
and 5122. The time step sizes are s ¼ 0:025h2 for the convex-splitting scheme (34) and s ¼ 0:05h for the second-order
scheme (37). The stopping criterion for the nonlinear multigrid method is based on the magnitude of a scaled l2 norm of
the residual. In particular, if this is below a tolerance (1:0� 10�12 here), the multigrid iteration is stopped. The errors and
rates of convergence are shown in Tables 1 and 2. The results suggest that both schemes are second-order accurate in space,
the convex-splitting scheme is first-order accurate in time and the second-order scheme is second-order accurate in time.

In Fig. 1, the time evolution of the scaled total energy F=ðLxLyÞ is shown for the convergence test, accompanied with the
density field / at the times t ¼ 0 and t ¼ 10. In Fig. 1(right), the white regions indicate / ¼ 0:0685; red, / ¼ 0:097; and blue,
/ ¼ 0:04. The second-order scheme (37) is used to generate plots, with h ¼ 32=256 and s ¼ 0:05h. The discrete energy is ob-
nd convergence rates of the convex-splitting scheme (34). Parameters are given in the text, and the initial condition are defined in Eq. (88).

es 162—322 322—642 642—1282 1282—2562 2562—5122

5:145� 10�4 2:457� 10�4 6:605� 10�5 1:669� 10�5 4:182� 10�6

1.066 1.895 1.985 1.997

nd convergence rates of the second-order scheme (37). Parameters are given in the text, and the initial condition are defined in Eq. (88).

es 162—322 322—642 642—1282 1282—2562 2562—5122

5:535� 10�4 2:398� 10�4 6:202� 10�5 1:553� 10�5 3:882� 10�6

1.207 1.951 1.998 2.000
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served to be non-increasing from one time-step to the next, even though our theory only guarantees that the energy is
bounded by its initial value (Proposition 9).

6.2. Analysis of effective time step

Following Cheng and Warren [2], we quantify how the numerical time step affects the dynamics during the evolution for
both schemes. We simulate both schemes with the same random initial conditions on a square domain ð0;128Þ � ð0;128Þ. In
particular, /0

i;j ¼ �/þ gi;j, where �/ ¼ 0:07 and gi;j is a random number satisfying ��/ 6 gi;j 6
�/. Further, � ¼ 0:025. For both

schemes, simulations were performed with 4 different time steps: s1 ¼ 0:01 (first row, Figs. 2 and 3), s2 ¼ 2 (second row, Figs.
2 and 3), s3 ¼ 10 (third row, Figs. 2 and 3), and s4 ¼ 20 (fourth row, Figs. 2 and 3). The mesh size is h ¼ 1:0. In Figs. 2 and 3,
the time evolution of the density field / is shown, where white regions indicate / ¼ �/; red, / ¼ �/þ 0:2; and blue,
/ ¼ �/� 0:2. The first rows in Figs. 2 and 3 are obtained at the following numerical times: t1 ¼ 450, t2 ¼ 900; t3 ¼ 1350,
and t4 ¼ 2400. Following Cheng and Warren, we compare results using different time steps at the same discrete energy levels
rather than at the same time. That is, the energy associated with each column in Figs. 2 and 3 is equal. The associated times are
listed in the figures.

From Fig. 2, we notice that the density fields obtained at the same energy levels using different time steps are qualita-
tively similar for the first-order scheme (34). However, the numerical times required to reach the same energy levels are
dramatically different. For example, to reach the energy obtained at t ¼ 2400 using time step s1, the scheme using time step
s3 requires simulation up to time t ¼ 73640, a factor of 30 increase! The second-order scheme (37) is more efficient however.
A similar comparison using the second-order scheme reveals that the times required to reach the same energy level using
different time steps are much better matched. Note that the result using the largest time step s4 with the second-order
scheme appears to be somewhat different from the others. This is explained below.

To make the comparison more quantitative, again following the analysis of Cheng and Warren [2], we use the solution
with time step s1 ¼ 0:01 as a reference solution and use it to calculate scaled differences for the simulations using different
time steps based column 1. More precisely, we define the scaled difference to be
Fig. 1.
and t ¼
second-
DðsiÞ ¼
k/ð�; t1; s1Þ � /ð�; t1; siÞk2

k/ð�; t1; s1Þk2
; ð89Þ
where, recall, t1 ¼ 450. Fig. 4 shows DðsiÞ versus time step in a log-log plot where only the second-order scheme (37) is used.
It indicates that the accuracy increases as the time step decreases and a scaled difference of 10% can be achieved with s � 10.
The time evolution of the scaled total energy F=ðLxLyÞ is shown for the convergence test (left), accompanied with the density field / at the times t ¼ 0
10 (right). In the density plots, the white regions indicate / ¼ 0:0685; red, / ¼ 0:097; and blue, / ¼ 0:04. The initial condition is in Eq. (88), and the
order scheme (37) is used to generate the plots, with h ¼ 32=256 ¼ 0:125 and s ¼ 0:05h. Other parameters are given in the text.



Fig. 2. The density fields / computed with the convex-splitting scheme (34) using four different time steps: s1 ¼ 0:01 (row 1), s2 ¼ 2:0 (row 2), s1 ¼ 10 (row
3), and s1 ¼ 20 (row 4). The other parameters are given in the text. The results in each column correspond to the same discrete energy. The numerical time
of each snapshot is shown on the top of the plot.
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Also the scaled difference tends to saturate when the time step is large enough. This result is consistent with those obtained
by Cheng and Warren using a much different scheme.

The evolution of scaled total energy obtained using the second-order scheme (37) with time step s1 is shown in Fig. 5
(compare with the / evolution in Fig. 3, row 1). Note that the scaled total energy decreases rapidly initially and is followed
by slow evolution at later times.

To demonstrate how important it is to capture the fast early-time dynamics, we restart the second-order code with the
solution obtained using the second-order scheme with s1 ¼ 0:01 at numerical time t1 ¼ 450 (row 1, column 1 of Fig. 3).
Restarting the code from this time, with time steps s2; s3, and s4, we observe significant improvement of the solution, espe-
cially, when the large time step s4 ¼ 20 is used. See results in Fig. 6. Recall from Fig. 3 that the density fields using time step
s4 are qualitatively different from those using the other three (smaller) time steps when all schemes are started from the
t ¼ 0 data.

As suggested by these results, the reason for the difference is that using the largest time step s4 in the second-order
scheme does not accurately capture the rapid, early-time dynamics. Observe that for all the cases in Fig. 6, the times required
to evolve to the same energy levels are much better matched when the early-time dynamics are captured with a small time
step. This suggests that performance of the scheme could be further enhanced by using an adaptive time step. This is cur-
rently under study.

6.3. Dynamics of polycrystals and grain boundaries

We now use the second-order scheme (37) to simulate the growth of a polycrystal and the dynamics of grain boundaries
in a supercooled liquid. We simulate a system on a square domain: ð0;804Þ � ð0;804Þ with �/ ¼ 0:285 and � ¼ 0:25, where �/
is the average of /. The numerical parameters are s ¼ 1 and h ¼ 0:4 (2048 grid points in each direction). The initial config-
uration of / consists of 3 groupings of random fluctuations located at the bottom of the domain, i.e., y ¼ 0, in an otherwise
homogeneous environment. The random fluctuations have amplitude �/. Neumann boundary conditions are used for the ver-



Fig. 3. The density fields / computed with the second-order scheme (37) using four different time steps: s1 ¼ 0:01 (row 1), s2 ¼ 2:0 (row 2), s3 ¼ 10 (row 3),
and s4 ¼ 20 (row 4). The other parameters are given in the text. The results in each column correspond to the same discrete energy. The numerical time of
each snapshot is shown on the top of the plot.
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Fig. 4. The scaled difference, defined in Eq. (89) is plotted versus time step in a log–log plot. The second-order scheme (37) is used in the calculations. The
parameters are given in the text and are the same as those used to produce Fig. 3.
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Fig. 6. The density fields / computed with the second-order scheme (37) using four different time steps: s1 ¼ 0:01 (row 1), s2 ¼ 2:0 (row 2), s3 ¼ 10 (row 3),
and s4 ¼ 20 (row 4). The calculations were initialized with the computed density field / at numerical time t1 ¼ 450 using result from the simulation using
the time step size s1 ¼ 0:01 from Fig. 3 (i.e., row 1, column 1 of Fig. 3). The other parameters are given in the text and are the same as those used to generate
Figs. 2 and 3. The results in each column correspond to the same discrete energy. The numerical time of each snapshot is shown on the top of the plot.
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Fig. 5. The time evolution of the scaled total energy for the simulation represented in row 1 of Fig. 3. In particular, the second-order PFC scheme (37) with
the time step size s1 ¼ 0:01 generated the result. The time axis is in log scale, whereas the energy axis is in linear scale. Note that the scaled total energy
decreases rapidly initially and is followed by slow evolution at later times.
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Fig. 7(a). Heterogeneous nucleation of three crystallites in a supercooled liquid. The snapshot shows the density field / at time t ¼ 1000. The parameters
are �/ ¼ 0:285; � ¼ 0:25; s ¼ 1, and h ¼ 0:4 (2048 grid points in each direction). The second-order scheme (37) is used in the calculation.

Fig. 7(b). Heterogeneous nucleation of three crystallites in a supercooled liquid. The snapshot shows the density field / at time t ¼ 2000. The parameters
are �/ ¼ 0:285; � ¼ 0:25; s ¼ 1, and h ¼ 0:4 (2048 grid points in each direction). The second-order scheme (37) is used in the calculation.
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tical directions whereas periodic boundary conditions are used in the horizontal directions. As shown in Figs. 7(a), 7(b), 7(c),
the initial configuration evolves into three crystallites, each with a different orientation and a well-defined liquid/crystal
interface. As time evolves the crystallites impinge upon one another and form grain boundaries. We remark that this result



Fig. 7(c). Heterogeneous nucleation of three crystallites in a supercooled liquid. The snapshot shows the density field / at time t ¼ 3000. The parameters
are �/ ¼ 0:285; � ¼ 0:25; s ¼ 1, and h ¼ 0:4 (2048 grid points in each direction). The second-order scheme (37) is used in the calculation.

0.03

0.032

0.034

0.036

0.038

0.04

0.042

Sc
al

ed
 to

ta
l e

ne
rg

y

100 101 102 10
3

10 4

Time

Fig. 7(d). The evolution of the scaled total energy during the heterogeneous nucleation and growth of three crystallites in a supercooled liquid shown in
(a)–(c). The time axis is in log scale, whereas the energy axis is in linear scale. Note that the scaled total energy decreases rapidly initially and is followed by
slow evolution at later times.
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is qualitatively similar to one obtained by Elder et al. [4]. The evolution of the scaled total energy is shown in Fig. 7(d). This
plot shows what is typically observed: even though strong energy stability has not been established for (37), one typically
observes that the energy is non-increasing from one time step to the next. This simulation also provides further evidence
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that adaptive time stepping could improve the efficiency of the schemes dramatically, since the late-time dynamics operates
on a much slower time scale than the early-time dynamics.

7. Conclusions

In this paper, we have presented and compared two unconditionally energy stable finite-difference schemes for the sixth-
order phase field crystal (PFC) equation. The first is a one-step scheme based on a convex splitting of a discrete energy and is
first order in time and second order in space. The second is a two-step scheme and is fully second-order. In both cases the
equations at the implicit time level are nonlinear but represent the gradients of strictly convex functions and are thus un-
iquely solvable, regardless of time step-size. The convergence of the schemes was demonstrated numerically. Our analysis of
the effective time step suggests that the error saturates when the time step is sufficiently large, and is consistent with the
results of study done by Cheng and Warren [2]. A comparison between the convex-splitting scheme (34) and the second-or-
der scheme (37) reveals that the second-order scheme is more efficient and tends to give a very accurate solution, provided
the fast time scale dynamics are accurately captured.

In the future, we plan to develop an adaptive time stepping algorithm together with the energy stable methods described
here. We anticipate that this will be very effective in accelerating phase field crystal simulations since the dynamics typically
involve a slowly evolving microstructure punctuated by a few rapid events. In forthcoming papers [7,17] we analyze and test
numerically convex splitting schemes for the modified phase field crystal (MPFC) equation, which was proposed in [12] and
takes into account elastic waves. Finally, we plan to use the new algorithms to investigate the epitaxial growth of nanoscale
thin films.
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